Boundary Behavior of Large Solutions for Semilinear Elliptic Equations in Borderline Cases

نویسنده

  • ZHIJUN ZHANG
چکیده

In this article, we analyze the boundary behavior of solutions to the boundary blow-up elliptic problem ∆u = b(x)f(u), u ≥ 0, x ∈ Ω, u|∂Ω =∞, where Ω is a bounded domain with smooth boundary in RN , f(u) grows slower than any up (p > 1) at infinity, and b ∈ Cα(Ω̄) which is non-negative in Ω and positive near ∂Ω, may be vanishing on the boundary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions

This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.

متن کامل

A two-phase free boundary problem for a semilinear elliptic equation

In this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $Dsubset mathbb{R}^{n}$ with smooth boundary‎. ‎We give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of Caffarelli and Friedman regarding the representation of functions whose ...

متن کامل

Remarks on large solutions of a class of semilinear elliptic equations

In this paper, we show existence, uniqueness and exact asymptotic behavior of solutions near the boundary to a class of semilinear elliptic equations −∆u = λg(u)− b(x)f(u) in Ω, where λ is a real number, b(x) > 0 in Ω and vanishes on ∂Ω. The special feature is to consider g(u) and f(u) to be regularly varying at infinity and b(x) is vanishing on the boundary with a more general rate function. T...

متن کامل

”boundary Blowup” Type Sub-solutions to Semilinear Elliptic Equations with Hardy Potential

Semilinear elliptic equations which give rise to solutions blowing up at the boundary are perturbed by a Hardy potential μ/δ(x, ∂Ω). The size of this potential effects the existence of a certain type of solutions (large solutions): if μ is too small, then no large solution exists. The presence of the Hardy potential requires a new definition of large solutions, following the pattern of the asso...

متن کامل

Bifurcation Method for Solving Positive Solutions to a Class of Semilinear Elliptic Equations and Stability Analysis of Solutions

Semilinear elliptic equations are ubiquitous in natural sciences. They give rise to a variety of important phenomena in quantum mechanics, nonlinear optics, astrophysics, etc because they have rich multiple solutions. But the nontrivial solutions of semilinear equations are hard to be solved for the lack of stabilities, such as Lane-Emden equation, Henon equation and Chandrasekhar equation. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012